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Abstract. In this paper we address two problems in pomeron calculus in zero transverse dimensions: the
summation of the pomeron loops and the calculation of the processes of multiparticle generation. We in-
troduce a new generating functional for these processes and obtain the evolution equation for it. We argue
that in the kinematic range given by 1� ln

(
1/α2S

)
� αSY �

1
αS
, we can reduce the pomeron calculus to the

exchange of non-interacting pomerons with the renormalized amplitude of their interaction with the target.
Therefore, the summation of the pomeron loops can be performed using the Mueller–Patel–Salam–Iancu
approximation.

1 Introduction

The problem of the pomeron interaction in zero trans-
verse dimensions has been discussed in the framework of
reggeon calculus [1–6] about three decades ago. However,
recently, we have seen a revival of the interest in this prob-
lem (see [7–14] and references therein). The very reason for
this in our opinion is related to the hope to solve the old
problem of finding the high energy asymptotic behavior of
the scattering amplitude in QCD . We hope for a solution,
not in the mean field approximation, where the solution
has been discussed and well understood both analytically
and numerically [15–51], but in the approach where the so
called pomeron loops should be taken into account [52–57].
The problem of taking into account the pomeron loops
can be reduced to BFKL pomeron calculus [58–71] and/or
to the solution of the statistical physics problems of the
Langevin equation and directed percolation [72–77]. The
latter approach is based on the probabilistic interpreta-
tion of the pomeron calculus, which also has roots in the
past [78, 79].
Pomeron calculus in zero transverse dimensions, being

an oversimplified model, has the same description in terms
of directed percolation as the general approach. Thus solv-
ing this model we can gain experience that will be useful for
the solution of the general problem of the interaction of the
BFKL pomerons in QCD.
It is well known that the calculus in zero transverse

dimensions can be treated as a system that evolves in imag-
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inary time it= Y with the Hamiltonian

H =−∆φφ++λ(φφ+2−φ2φ+)

and the evolution equation for the wave function

dΨ

dY
=−HΨ , (1)

where the pomeron intercept is ∆ ∝ αS and the triple
pomeron vertex λ∝ α2S.
In the next section we will discuss the evolution equa-

tion for the generating functional that describes the system
of pomerons in terms of probabilities to find ‘wee’ par-
tons (color dipoles [80, 81]). We introduce Γ (1→ 2) =∆
and Γ (2→ 1) =∆γ with γ the amplitude for the low en-
ergy interaction of the color dipole with the target (target–
pomeron vertex) and γ ∝ α2S. The estimates for ∆ and λ
are given in the leading order of perturbative QCD.We can
trust the approach with the Hamiltonian of (1) only in the
kinematic region of Y given by the following equation:

1� ln(1/α2S)� αSY �
1

αS
. (2)

Indeed, the n pomeron exchanges give contributions pro-
portional to (γe∆Y )2 and, therefore, we need to sum
them in the kinematic region, where γe∆Y ≥ 1 or ∆Y ≥
ln(1/γ) ≈ ln(1/α2S). However, we cannot go to ultrahigh
energies, since we do not know the higher order corrections
to the BFKL kernel and to the triple pomeron vertex. The
contribution of the BFKL pomeron exchange can be writ-
ten as γe(∆+Constα

2
S)Y and the high order correction term

is essential for αSY > 1/αS.
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In this paper, for the kinematic range given by (2), we
obtain two results. We introduce a new generating func-
tional that allows us to calculate processes of multiparticle
generation, since it gives us the probability to have a given
number of cut and uncut pomerons [83]. We derive the evo-
lution equation for this generating functional both in the
mean field approach and in the approach that takes into
account the pomeron loops. A similar problem was also
considered by Ciafaloni and Marchesini [82] more than 30
years ago in the framework of the RFT Lagrangian. In the
present paper we reproduce the general result of [82], in
particular the independent dynamics in the one direction
of rapidity of an uncut pomeron and a new object (a linear
combination of an uncut and cut pomeron). This corres-
ponds to partial diagonalization of the Lagrangian in terms
of the new variable φ++φ−− iφc found in [82].
The second result is related to the method of summa-

tion of the pomeron loops. We claim that in the kinematic
region of (2) the pomeron interaction given by Hamilto-
nian of (1) can be reduced to the system of free pomerons
with the renormalized amplitude of the dipole–target in-
teraction at low energies. In other words, we can view the
evolution of our system of ‘wee’ partons (color dipoles) as
a system of non-interacting partons only with emission ab-
sorbed in the evolution of the BFKL pomerons, and all
specific features of this system determined by the low en-
ergy amplitude of the ‘wee’ parton interaction with the
target. Having this in mind we state that the Mueller–
Patel–Salam–Iancu approach [85–88] gives the solution to
the problem.
The paper is organized as follows. In the next section

we introduce the mean field approach and discuss it in
the framework of the generating functional. We introduce
a new generating functional that gives us the possibility
to calculate the probability to find a given number of cut
and uncut pomerons. Therefore, knowing this generating
functional we can calculate the cross section with given
multiplicities. We derive the evolution equation for this
functional. In Sect. 3 we take into account the pomeron
loops and generalize the evolution equation. In this section
we reconsider the problem of summation of all pomeron
loops in the kinematic region of (2) and argue that we
can reduce this problem to a consideration of a system
of non-interacting pomerons with renormalized vertex of
the pomeron–target interaction. Based on this idea we use
the Mueller–Patel–Salam–Iancu approach to calculate the
scattering amplitude at high energies both for elastic and
inelastic interactions with different multiplicities of par-
ticles in the final state.
In conclusion, we summarize the results and discuss

open problems.

2 The mean field approximation

2.1 General approach

Our approach to multiparticle production is based on the
AGK cutting rules [83]. These rules stem from the unitarity

constraint in the s-channel, namely,

2 ImABFKL(s, b) = 2NBFKL(s, b) =GBFKLin (s, b) , (3)

where ImABFKL(s, b) ≡ NBFKL(s, b) denotes the imagi-
nary part of the elastic scattering amplitude for the dipole–
dipole interaction at energy W =

√
s and at the impact

parameter b. It is normalized in such a way that the total
cross section is equal to σtot = 2

∫
d2bNBFKL(s, b). GBFKLin

is the contribution of all inelastic processes for the pomeron
and σin =

∫
d2bGin(s, b). Therefore, (3) gives us the struc-

ture of the BFKL pomeron exchange through the inelastic
processes, and it can be formulated as the statement that
the exchange of the BFKL pomeron is related to the pro-
cesses of multigluon production in a certain kinematics (see
Fig. 1). Equation (3) is proven in [58, 59] in QCD. Using it,
we can express all processes of multiparticle production in
terms of exchange and interactions of the BFKL pomerons
and/or the cut BFKL pomerons (see Fig. 2).
The AGK cutting rules establish the relation between

different processes that stem from BFKL pomeron dia-
grams. For example, the simple triple pomeron diagrams
in Fig. 3 lead to three inelastic processes: diffractive pro-
duction of the system with mass ln(M2/m2) = Y −Y0
(Fig. 3A); multigluon production in the entire kinematic
region of rapidity Y −0 with the same multiplicity of glu-
ons as in one pomeron (Fig. 3B); and multigluon produc-
tion in the region Y −0 but with the same multiplicity of
gluons as in one pomeron only in the rapidity window Y −
Y0, while for the rapidity Y0−0 the gluon multiplicity is
two times larger than for one pomeron (Fig. 3C). The AGK
cutting rules [83] say that the cross sections of these three
processes are related as

σA : σB : σC = 1 :−4 : 2 . (4)

At first sight the cross section of process B is negative, but
it should be stressed that one pomeron also contributes to
the same process and the resulting contribution is always
positive.
Figures 1 and 3 as well as (4) allow us to understand

the equation for single diffractive production in the mean

Fig. 1. The diagram for the cut BFKL pomeron that illus-
trates (3)
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Fig. 2. Several examples of pomeron diagrams that contribute to multiparticle production: diffraction production of the bunch of
particles in the region of rapidity ln(M2/m2) = Y −Y0 (a); the process of multiparticle production with the average multiplicity
due to exchange of four pomerons (b); and the process of multiparticle production with the multiplicity four times larger than the
average multiplicity

Fig. 3. AGK cutting rules for the triple pomeron diagram:
diffractive production of the system with mass ln(M2/m2) =
Y −Y0 (A);multigluon production in the entire kinematic region
of rapidity Y −0 with the same multiplicity of gluons as in one
pomeron (B); andmultigluon production in the region Y −0 but
with the samemultiplicity of gluons as in onepomeron only in the
rapidity window Y −Y0, while for the rapidity Y0−0 the gluon
multiplicity is two times larger than for one pomeron (C)

field approximation that has been written by Kovchegov
and Levin [89] and that has the following form (see Fig. 4
for a graphical representation of this equation):

∂ND(x01,b, Y, Y0)

∂Y

=
αCF

π2

∫

ρ

d2x2
x201
x202x

2
12

×

(

ND
(

x02,b+
1

2
x12, Y, Y0

)

+ ND
(

x12,b+
1

2
x02, Y, Y0

)

−ND(x01,b, Y, Y0)

+ND
(

x02,b+
1

2
x12, Y, Y0

)

ND
(

x12,
1

2
x02, Y, Y0

)

−4ND
(

x02,b+
1

2
x12, Y, Y0

)

N0

(

x12,b+
1

2
x02, Y

)

Fig. 4. Different pomeron
cuts contributing to the cross
section of diffractive dissoci-
ation, which lead to different
terms on the right hand side
in (5)

+ 2N0

(

x02,b+
1

2
x12, Y

)

N0

(

x12,b+
1

2
x02, Y

))

,

(5)

with the initial condition given by

ND(x⊥,b, Y = Y0, Y0) =N
2
0 (x⊥,b, Y0) , (6)

where N0 is the solution of the Balitsky–Kovchegov equa-
tion [21–23] andND(x,b;Y ;Y0) is the diffraction dissocia-
tion of the colorless dipole with size x at impact parameter
b into the system of gluon with the rapidity gap larger
than Y0 at energy Y . At first sight, (5) contradicts the
AGK relations given by (4) (see Fig. 3), but this contra-
diction can easily be resolved if we take into account the
coefficient 2 in (3) (see [89] for more details as well as for
a proof based directly on the dipole approach to high en-
ergy scattering).
Despite the simple structure of (5), which is only a little

bit more complicated than the Balitsky–Kovchegov equa-
tion, as far as we know there exists no analytical solution
to this equation and there is only an attempt to solve it
numerically [92, 93]. However, this equation has a simple
solution in the toy model [8, 89, 94], which we are going to
discuss.

2.2 Pomeron calculus in zero transverse dimensions:
general approach

The mean field approximation looks extremely simple in
pomeron calculus in zero transverse dimensions (the toy
model [80, 81, 90, 91]). Indeed, in the toy model, in which
there is no dependence on the sizes of the interacting
dipoles, the generating functional degenerates to the gener-
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ating function of the form

Z0(u|Y ) =
∞∑

n=0

Pn(Y )u
n , (7)

where Pn(Y ) is the probability to find n dipoles (and/or
n pomerons) at rapidity Y . For the probabilities Pn(Y ) we
can write the Markov chain, namely [80, 81, 90, 91]

dPn(Y )

dY
=−Γ (1→ 2)nPn(Y )+Γ (1→ 2)(n−1)Pn−1(Y ) .

(8)

Equation (8) has a simple structure: for the process of
dipole splitting we see two terms. The first one, with the
negative sign, describes a decrease of the probability Pn
due to the process of the splitting of dipoles. The second
term, with positive sign, is responsible for an increase of
the probability due to the same processes of dipole interac-
tions.
Equation (8) can be rewritten in the elegant form of the

master equation for Z0, namely

∂Z0(u|Y )

∂Y
=−Γ (1→ 2)u(1−u)

∂Z0(u|Y )

∂u
, (9)

where Γ (1→ 2) ∝ ᾱS in QCD. The initial and boundary
conditions look as follows:

initial condition: Z0(u|Y = 0) = u ,

boundary condition: Z0(u= 1|Y ) = 1 . (10)

In (10) the initial condition means that we are studying
the evolution of one dipole, while the boundary condition
follows from the normalization of the sum of probabilities.
With this initial condition the linear differential equation
(9) can be written as a non-linear one:

∂Z0(u|Y )

∂Y
=−Γ (1→ 2)Z0(u|Y )+Γ (1→ 2)Z

2
0(u|Y ) .

(11)

Introducing the scattering amplitude,

N0(γ|Y ) = ImAel = −
∞∑

n=1

(−1)n

n!

∂nZ0(u|Y )

∂un

∣
∣
∣
∣
∣
u=1

γn ,

(12)

with γ being the scattering amplitude of the interaction of
a single dipole with the target, we can find (9) for the am-
plitude [95]:

∂N0(γ|Y )

∂Y
= Γ (1→ 2)(γ−γ2)

∂N0(γ|Y )

∂γ
. (13)

Using the initial condition N0(γ|Y = 0) = γ one can
rewrite (13) as a non-linear equation for the amplitude

∂N0(γ|Y )

∂Y
= Γ (1→ 2)N0(γ|Y )−Γ (1→ 2)N

2
0 (γ|Y ) .

(14)

Equation (14) is easy to solve in this model and the solu-
tion has been found in [8, 89, 94]. It was noticed in [21–23]
that one can get (14) directly from (11) by substitution of
N0(γ|Y ) = 1−Z0(1−γ|Y ). Using this fact we can go back
to (9) and write it as

∂Z(1−γ|Y )

∂Y
= Γ (1→ 2)

×

(

γ
∂Z(1−γ|Y )

∂γ
−γ2

∂Z(1−γ|Y )

∂γ

)

.

(15)

2.3 The generating functional for multiparticle
production: definition and linear evolution
equation

Here we would like to develop a method that will allow
us not only to find the cross sections of diffractive pro-
duction, but also to consider all processes of multiparticle
production at high energy. Having this goal in mind, we
propose a generalization of the generating functional given
by (7), namely, we introduce a new generating functional
Z(u, v|Y ) as follows:

Z(u, v|Y ) =
∞∑

n=0,m=0

P (n,m|Y )unvm , (16)

where P (n,m|Y ) is the probability to find n uncut pomer-
ons and m cut pomerons. Directly from (16) and from the
fact that P (n,m|Y ) is a probability we find the first bound-
ary condition:

Z (u= 1, v = 1|Y ) = 1 . (17)

To find the second boundary condition we can use the
full form of the s-channel unitarity constraint. Assuming
that the scattering amplitude is pure imaginary at high en-
ergy, this constraint looks as follows:

2N(s, b) = |N(s, b)|2+Gin , (18)

where the first term in the l.h.s. is the elastic term with
no cut pomerons, while the second one is the total con-
tribution of the inelastic processes (in other words, a sum
over all cut pomerons). Using the functionals Z0(u|Y ) and
Z(u, v|Y ) we can calculate the left and right hand sides of
(18), namely [21–23]

N0 = 1−Z0(1−γ|Y ) , (19)

|N(s, b)|2+Gin = 2(1−Z(1−γ, 1−γin|Y )) , (20)

where γ =N(s= 0, b) is the imaginary part of the scatter-
ing amplitude of a dipole with the target at low energies,
while γin is the inelastic contribution (|N(s, b)|2+Gin) for
the interaction of a dipole with the target at low energy.
Generally speaking both these amplitudes are arbitrary
and have to be calculated from non-perturbative QCD;
however, assuming that the low energies are not very low
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and that we can apply (3), we see that 2γ = γin. Using this
relation we can rewrite (19) and (20) in the form

Z0(u|Y ) = Z(u, u|Y ) . (21)

The initial condition depends on what we want to
calculate. This is the main advantage of the generating
functional, allowing us to calculate everything. For ex-
ample, the cross section of single diffraction integrated
over all produced masses (σsd) we can find just calculating
Z(u, v = 0|Y −Y0) for the initial condition in the form

Z (u, v|Y = Y0) = v . (22)

The cross section is equal to

σsd(γ(Y0)|Y −Y0)) = 1−Z(u= 1−γ, v= 0|Y −Y0) .
(23)

The main idea of this paper is to introduce a cut
pomeron being split into three different states. By anal-
ogy with (15) we can relate to each process a corresponding
term of the differential equation

�P →�P+ �P ∼ γ2in
∂Z

∂γin
, (24)

�P →�P +P ∼ γγin
∂Z

∂γin
, (25)

�P → P +P ∼ γ2
∂Z

∂γin
; (26)

where the notation �P and P stands for cut and un-
cut pomeron, respectively, and only second order terms
in γ (γin) are shown. The next step it to use the AGK cut-
ting rules to write the resulting evolution equation

∂Z

∂Y
= Γ (1→ 2)(γ−γ2)

∂Z

∂γ

+Γ (1→ 2)
(
2γ2−4γγin+γ

2
in+γin

) ∂Z
∂γin

.

(27)

It can easily be seen that the second term reproduces the
first term for 2γ = γin. We note that u = 1− γ and v =
1−γin, and thus (27) for u and v reads

∂Z

∂Y
=−Γ (1→ 2)u(1−u)

∂Z

∂u

−Γ (1→ 2)(2u2−4uv+ v2+ v)
∂Z

∂v
. (28)

The description in terms of a generating function be-
comes clear for a Markov chain.We use the definition of the
generating function given by (16) to find the differential

equation for the probabilities

∂P (n,m|Y )

∂(Γ (1→ 2)Y )
=

(P → P +P ) −nP (n,m|Y )+ (n−1)P (n−1,m|Y ) ,
(29)

(�P →�P+ �P ) +mP (n,m|Y )− (m−1)P (n,m−1|Y ) ,
(30)

(�P →�P +P ) −4mP (n,m|Y )+4mP (n−1,m|Y ) ,
(31)

(�P → P +P ) +2mP (n,m|Y )−2(m+1)

×P (n−2,m+1|Y ) , (32)

where each line describes the specific process of pomeron
splitting discussed above. It is instructive to compare this
equation to (8). Each of (29)–(32) consists of two terms:
one describes the increase of the probability to find n
pomerons due to decay of one pomeron to two, and one is
responsible for the decrease of this probability since one of
n pomerons can decay. In all equations, except (30) and
(32), the increase leads to a plus sign and a decrease to a
minus sign. However, in (30) and (32) the signs are oppo-
site in accordance with the AGK cutting rules (see Fig. 3).
In this case we have to say that the decay �P → P +P
and �P →�P+ �P have negative amplitudes. The appearance
of the minus sign in the Markov chain does not contra-
dict the probabilistic picture since the physical meaning
of the triple pomeron vertex in this framework is the rate
of change of the number of pomerons. The value of the
rate could be also negative, corresponding to a negative
production rate (the decrease of the number of pomerons
with rapidity). For a more subtle discussion of this topic
the reader is referred to [78, 79], where the probabilistic
interpretation of the pomeron calculus was shown to be in-
dependent of the sign of the vertices. It should be stressed
that in terms of the amplitude (see (27)) we obtain posi-
tive cross sections with a different multiplicity of produced
particles.
Equations (29)–(32) give a clear probabilistic interpre-

tation of all pomeron splitting processes under discussion.
It turns out that (28), being a typical Liouville equa-

tion, has solutions that depend on the two variables ξ1 =
Γ (1→ 2)Y + ln u

1−u and ξ2 = Γ (1→ 2)Y + ln
2u−v

1−(2u−v) .

The general solution of this equation is given by an arbi-
trary function of variables ξ1 and ξ2, which in our case can
be written as a sum of two functions, namely

Z = F1

{

Γ (1→ 2)Y +ln
u

1−u

}

+F2

{

Γ (1→ 2)Y +ln
2u− v

1− (2u− v)

}

. (33)

For our initial condition (22) the solution reads

Z =
2ue−Γ (1→2)Y

1+u(e−Γ (1→2)Y −1)
−

(2u− v)e−Γ (1→2)Y

1+(2u− v)(e−Γ (1→2)Y −1)
.

(34)

One can easily see that this solution satisfies both the
initial condition (22) and the boundary condition (17).



390 E. Levin, A. Prygarin: Pomeron calculus in zero transverse dimensions: summation of pomeron loops

2.4 The generating functional for multiparticle
production: non-linear equation

Using our initial condition (22) we can rewrite the linear
differential equation (28) as a non-linear one. We use the
fact, mentioned above, that (28) is a differential equation of
the two variables ξ1 and ξ2 and, thus, has no separate de-
pendence on Y . This means that the differential equation
(28) written at some rapidity Y keeps the same form for
any rapidity. We pick the initial rapidity Y = 0 and substi-
tute the generating function given by (22) into (28):

∂Z

∂Y
= 0−Γ (1→ 2)(2u2−4uv+ v2+ v) . (35)

Now we use the initial condition from (10) for the generat-
ing function with no cut pomerons. In terms of Z0 and Z
(35) reads

∂Z

∂Y
=−Γ (1→ 2)

(
2Z20 −4Z0Z+Z

2+Z
)
. (36)

We identify the scattering amplitude and the diffrac-
tive cross section with N0(γ|Y ) = 1−Z0(1− γ|Y ) and
N(γ, γin|Y ) = 1−Z(1− γ, 1− γin|Y ), respectively. For
N0(γ|Y ) andN(γ, γin|Y ), (36) reads

∂N(γ, γin|Y )

∂Y
=−Γ (1→ 2)

{
2N20 (γ|Y )

−4N0(γ|Y )N(γ, γin|Y )

+N2(γ, γin|Y )+N(γ, γin|Y )
}
. (37)

This equation has the same form as the equation for
diffraction production1 obtained by Kovchegov and Levin
(see (5)), but it is written for a general functional and
describes not only diffractive production but also the pro-
cesses of particle production with any value of multiplicity.
The fact that (5) has a simple generalization in the general
case of QCD gives us hope to generalize this equation.

2.5 The generating functional for multiparticle
production: consistency with the AGK cutting
rules

We want to check the consistency of our solution (34) with
the AGK cutting rules in an explicit way. To do this, we cal-
culate the cross section of a process σ(k) with a givenmulti-
plicity k from both the generating function given by (34)
and directly from the AGK cutting rules, and we compare
them next. We define the cross section with multiplicity k
as

σ(k) =
1

k!

∂kN(γ, γin|Y )

∂γkin

∣
∣
∣
∣
γin=0

·γkin , (38)

whereN(γ, γin|Y ) = 1−Z(1−γ, 1−γin|Y ).

1 The difference in the overall minus sign corresponds to dif-
ferent definitions of the rapidity variable moving in opposite
directions.

As an example we pick the multiplicity of one cut
pomeron, i.e. k = 1 for any number of uncut pomerons.
From (38) with k = 1 we get

σ(1) =
γine

Γ (1→2)Y

(1+2γ(eΓ (1→2)Y −1))2
. (39)

On the other hand we can use the coefficients for multiple
pomeron exchange from the AGK cutting rules [83]. In this
case the cross section for the multiplicity of k cut pomerons
reads

σ(k) =
∞∑

n=0

(−1)n−kCnk (2γ)
nenΓ (1→2)Y , (40)

where eΓ (1→2)Y stands for the pomeron propagator.
For k = 1 we sum over n in (40) and obtain

σ(1) =
2γeΓ (1→2)Y

(1+2γeΓ (1→2)Y )2
. (41)

In the high energy limit γin = 2γ and e
Γ (1→2)Y −1 


eΓ (1→2)Y ; thus (39) reproduces (41). It can easily be shown
that this holds for any value of k.
We can further compare the cross sections obtained

from the generating function and a direct summation of fan
diagrams using the AGK rules [96]. In our approach this
corresponds to

σsd =N(γ, γin = 0|Y ) , σin =N(γ, γin = 2γin|Y ) ,
(42)

where N(γ, γin|Y ) = 1−Z(1−γ, 1−γin|Y ). The resulting
expressions are identical and are given by

σsd =
2γ2eΓ (1→2)Y (eΓ (1→2)Y −1)

(1+γ(eΓ (1→2)Y −1))(1+2γ(eΓ (1→2)Y −1))
,

σel =
2γeΓ (1→2)Y

1+2γ(eΓ (1→2)Y −1)
,

σtot =
2γeΓ (1→2)Y

1+γ(eΓ (1→2)Y −1)
. (43)

3 Pomeron loops

3.1 Evolution equation with loops

Now we want to account for contributions of the pomeron
loops. This problem has already been solved for the case
with no cut pomerons [91]. The master equation for no cut
pomerons is given by

∂Z

∂Y
=−Γ (1→ 2)u(1−u)

∂Z

∂u
+
1

2
Γ (2→ 1)(u−u2)

∂2Z

∂u2
.

(44)

Unfortunately, one cannot generalize (28) for diffractive
processes by just adding second order derivative terms by
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analogy with (44). The reason for this is that this type
of equation would include diagrams that do not exist.
For example, diagrams of the type �P → P +P → P where
a cut pomeron splits to two uncut pomerons with fur-
ther merging to an uncut pomeron are forbidden. To re-
solve this problem we introduce two separate variables w
and w̄ for an uncut pomeron in amplitude or conjugate
amplitude, respectively. Naturally, these two subsets of
pomerons evolve separately till the cut pomeron is intro-
duced; alternatively, their evolutions mix only via a cut
pomeron. Using our previous discussion we can readily
write this new type of evolution equation based on (28):

∂Z

∂Y
=−Γ (1→ 2)

{

w(1−w)
∂Z

∂w
− w̄(1− w̄)

∂Z

∂w̄

}

−Γ (1→ 2)(2ww̄−2wv−2w̄v+ v2+ v)
∂Z

∂v

+
1

2
Γ (2→ 1)

{

(w−w2)
∂2Z

∂w2
+(w̄− w̄2)

∂2Z

∂w̄2

}

−
1

2
Γ (2→ 1)

{

2(v−ww̄)
∂2

∂w∂w̄
+2(v−wv)

∂2

∂w∂v

+ 2(v− w̄v)
∂2

∂w̄∂v
+(v− v2)

∂2

∂v2

}

Z , (45)

where the first and second lines are a generalization of (28)
for the variables w and w̄, the third line corresponds to
(44), and the last line needs a little bit more explanation.
We have to introduce a new generating function

Z(w, w̄, v|Y ) =
∑

k=0

∑

l=0

∑

m=0

P (k, l,m|Y )wkw̄lvm ,

(46)

where P (k, l,m|Y ) stands for the probability to find k un-
cut pomerons in the amplitude, l uncut pomerons in the
conjugate amplitude and m cut pomerons at some rapid-
ity Y . For the last term of (45) we write a Markov chain in
a similar manner as we did for (29)–(32), namely

∂P (k, l,m|Y )

∂Y
=

(P → P +P )+Γ (1→ 2){(k−1)P (k−1, l,m|Y )

−kP (k, l,m|Y )} ,

(P̄ → P̄ + P̄ )+Γ (1→ 2){(l−1)P (k, l−1,m|Y )

− lP (k, l,m|Y )} ,

(�P →�P+ �P )−Γ (1→ 2){(m−1)P (k, l,m−1|Y )

−mP (k, l,m|Y )} ,

(�P → P+ �P )+2Γ (1→ 2){mP (k−1, l,m|Y )

−mP (k, l,m|Y )} ,

(�P → P̄+ �P )+2Γ (1→ 2){mP (k, l−1,m|Y )

−mP (k, l,m|Y )} ,

(�P → P + P̄ )−2Γ (1→ 2){(m+1)

×P (k−1, l−1,m+1|Y )

−mP (k, l,m|Y )} ,

(P +P → P )+
1

2
Γ (2→ 1){k(k+1)P (k+1, l,m|Y )

−k(k−1)P (k, l,m|Y )} ,

(P̄ + P̄ → P̄ )+
1

2
Γ (2→ 1){l(l+1)P (k, l+1,m|Y )

− l(l−1)P (k, l,m|Y )} ,

(�P+ �P →�P )−
1

2
Γ (2→ 1){m(m+1)P (k, l,m+1|Y )

−m(m−1)P (k, l,m|Y )} ,

(�P +P →�P )−
2

2
Γ (2→ 1){(k+1)mP (k+1, l,m|Y )

−kmP (k, l,m|Y )} ,

(�P + P̄ →�P )−
2

2
Γ (2→ 1){(l+1)mP (k, l+1,m|Y )

− lmP (k, l,m|Y )} ,

(P + P̄ →�P )−
2

2
Γ (2→ 1){(k+1)(l+1)

×P (k+1, l+1,m|Y )

−klP (k, l,m|Y )} , (47)

where P̄ denotes a pomeron in the conjugate amplitude
and the factor of 12 accounts for the fact that the pomerons
are identical in this approach. Each line in (47) as in (29)–
(32) has a clear probabilistic interpretation. We multiply
(47) by wkw̄lvm, sum over all k, l and m, and using the
definition (46) we obtain (45).
Even in our simple model with no coordinate depen-

dence (45) is too complicated and its solution is still to
be found. But before the solution is found we can see that
putting w = w̄ = u, i.e. making no difference between un-
cut pomerons, the first two lines of (45) correctly repro-
duce (28). Moreover, we can check it further and, using
the initial condition Z(w, w̄, v|Y = 0) = v, we can perform
iterations:

∂Z1

∂Y
=−Γ (1→ 2)(2ww̄−2wv−2w̄v+ v2+ v) ,

(48)

giving

Z1 =−Γ (1→ 2)(2ww̄−2wv−2w̄v+ v
2+ v)Y . (49)

At the next step

Z2 =+Γ
2(1→ 2)

×{w(1−w)(2w̄−2v)− w̄(1− w̄)(2w−2v)}
Y 2

2
+Γ 2(1→ 2)(2ww̄−2wv−2w̄v+ v2+ v)

× (−2(w+ w̄)+2v+1)
Y 2

2

−
1

2
Γ (1→ 2)Γ (2→ 1){2(v−ww̄)(−2)+2(v−wv)2

+2(v− w̄v)2+(v− v2)(−2)}
Y 2

2
. (50)

It is easy to see from (50) that (45) correctly reproduces the
sign and the combinatorics coefficient of the pomeron loops
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in accordance with the AGK cutting rules. For example,
in the first term in the third line, − 12Γ (1→ 2)Γ (2→
1)2(v−ww̄)(−2), the term proportional to v describes the
pomeron loop of the type �P → P + P̄ →�P . This loop has a
factor of 2 and brings in a plus sign as expected. Similarly,
the terms proportional to v in the second and third term of
the last line correspond to loops of the type �P →�P +P →�P
and �P →�P + P̄ →�P , respectively. Each of them brings in
a factor of −2, and putting P = P̄ we have a factor of −4,
which is in a agreement with the AGK cutting rules. Thus,
we expect (45) to properly include the pomeron loops into
the evolution.
At the end of this part we would like to mention that

the problem has already been treated by Ciafaloni and
Marchesini [82] many years ago, but in terms of the RFT
Lagrangian. They separated uncut pomerons in the am-
plitude and conjugate amplitude by introducing different
fields (φ+ and φ−). It is interesting to notice that, just like
in our case, these authors also have partial diagonaliza-
tion of the Lagrangian in terms of the new variable φ++
φ−− iφc. By partial diagonalization one should understand
the diagonal vertices only in one rapidity direction. In our
case this can be formulated as a separation of the evolu-
tions of pomerons corresponding to w, w̄ and w+ w̄− v
in MFA.

3.2 A new method of summation of the pomeron
loops: improved Mueller–Patel–Salam–Iancu
approach

The solution to (45) will give the generating functional.
However, (45) is based on the probabilistic interpretation
of the pomeron calculus in terms of a Markov process. In
this subsection we would like to suggest a different inter-
pretation with a different procedure of summation of the
pomeron diagrams.
Firstly we consider the simplest ‘fan’ diagram of Fig. 5.

It can be calculated in an obvious way, namely

A(Fig. 5) = γG(Y −0)−∆γ2
∫ Y

0

dy1G(Y −y1)G
2(y1−0)

= γe∆Y −∆γ2
∫ Y

0

dy1e
∆(Y+y1) (51)

= γe∆Y −∆γ2
(
1

∆
e2∆Y −

1

∆
e∆Y
)

=−γ2e2∆Y +(γ+γ2)e∆Y

=−γ2e2∆Y +γRe
∆Y ,

Fig. 5. The renormalization
procedure in the case of the
simplest ‘fan’ diagram

where Γ (1→ 2) (see (9)) is denoted as ∆; γ is the am-
plitude of the pomeron interaction with the target and
G(Y −y) stands for the Green function of the pomeron
G(Y −y) = exp(∆(Y −y)).
As one can see, the integration over y1 reduces the

diagram in Fig. 5 to two contributions: the exchange of
two non-interacting pomerons and the exchange of one
pomeron with the renormalized vertex: γR = γ+ γ

2. In
Fig. 6 is shown the pomeron ‘fan’ diagram of the second
order, which we have to integrate over the two rapidities
y1 and y2. The result is

A(Fig. 6) = 2∆2γ3
∫ Y

0

dy1

∫ y1

0

dy2G(Y −y1)G(y1−0)

×G(y2−0)G
2(y2−0)

= 2∆2γ3
∫ Y

0

dy1

∫ y1

0

dy2e
∆(Y+y1+y2)

= 2∆2γ3
(
1

2∆2
e3∆Y −

1

∆2
e2∆Y +

1

2∆2
e∆Y
)

.

(52)

Adding the contributions of this diagram and the diagrams
of Fig. 5, we obtain

A(Fig. 5)+A(Fig. 6)

=−γ3e3∆Y − (γ2+2γ3)e2∆Y +(γ+γ2+γ3)e3∆Y

= γ3e3∆Y −
(
γ
(2)
R

)2
e2∆Y +γRe

∆Y . (53)

Therefore, one can see that the scattering amplitude can
be rewritten as exchanges of the pomerons without interac-
tion between them, but with a pomeron–particle vertex. In
the dipole model this vertex has the meaning of the ampli-
tude of a two dipole interaction in the Born approximation
of perturbative QCD.
These two examples illustrate our main idea: pomeron

calculus in zero transverse dimensions can be viewed as the
theory of free, non-interacting pomerons whose interaction
with the target has to be renormalized. It is easy to see that
in theMFAwe can rewrite the master equation (see (9) and
(13)) in the form

∂N0(γR|Y )

∂Y
= Γ (1→ 2)γR

∂N0(γR|Y )

∂γR
, (54)

with

γR =
γ

1−γ
. (55)
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Fig. 6. The renormalization
procedure in the case of the
‘fan’ diagram of the second
order

We have shown the way that (55) has started to build
up in a perturbation expansion in (51) and (52).
The general solution of (54) is a system of non-

interacting pomerons, and the scattering amplitude can be
found in the form

N0(γR|Y ) =
∞∑

n=1

Cnγ
n
RG

n(Y −0) , (56)

where the coefficients Cn could be found from the initial
conditions, namely from the expression for the low energy
amplitude. In particular, the initial condition

N0(γR|Y = 0) = γ = γR/(1+γR) (57)

generates Cn = (−1)n and the solution is

N0(γR|Y ) =
γRe

∆Y

1+γRe∆Y
. (58)

The initial condition of (57) has very simple physics behind
it. It describes the independent (non-correlated) produc-
tion of the pomerons at low energy but with only the condi-
tion that one pomeron lives a shorter time than the second
one (see Fig. 7). If all n pomerons were emitted by the same
dipole (see Fig. 7b) this condition leads to a Glauber factor
1/n! leading to N0(γR|Y = 0) = γ = 1− exp(−γR) instead
of (57). However, if pomerons are produced as the con-
sequent decays (see Fig. 7a) the factor is equal to 1. The
factor (−1)n comes from Glauber screening, resulting in
(57). In QCD we have strong evidence that the second case
is correct [60–64].
For the analysis of enhanced diagrams we start from

the first diagram of Fig. 8. It leads to the following

Fig. 8. The renormalization procedure in the case of the simplest enhanced diagram

contribution:

A(Fig. 8) =−∆2γ2
∫ Y

0

dy1

∫ y1

0

dy2G(Y −y1)

×G2(y1−y2)G(y2−0)

=−∆2γ2
∫ Y

0

dy1

∫ y1

0

dy2d
∆(Y+y1−y2)

=−γ2e2∆Y +γ2e∆Y +∆γ2Y e∆Y , (59)

where Γ (2→ 1) =∆γ2 [54, 55].
Adding (59) to the exchange of the one pomeron, we ob-

tain the result that the exchange of one pomeron and the
enhanced diagram of Fig. 8 can be written in close form

One pomeron exchange+A(Fig. 8) = γRe
∆RY −γ2e2∆Y ,

(60)

Fig. 7. The diagram that illustrates the initial condition
of (57)
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with

γR = γ
(2) = γ+γ2 , ∆R =∆+γ∆ . (61)

It is easy to see that (59) can be viewed as the expansion to
first order of (60).
Therefore, the pomeron loops can be either large (of the

order of Y ) and they can be considered as un-enhanced di-
agrams; or they may be small (of the order of 1/∆) and can
be treated as the renormalization of the pomeron intercept.

Fig. 9. More examples of the
reduction of enhanced dia-
grams to the system of non-
interacting pomerons

In QCD∆∝ ᾱS, while γ ∝ α2S. Therefore, the renormal-
ization of the pomeron intercept ∆ is proportional to α3S.
We can neglect this contribution since (i) there are a lot
of α2S corrections to the kernel of the equation that are
much larger than this contribution; and (ii) in the region of
Y � 1/α2S, where we can trust our pomeron calculus (see
the introduction), we have (∆R−∆)Y � 1.
As a next step in our proof we have to consider the

reduction to a system of non-interacting pomerons of the
more complicated enhanced diagrams shown in Fig. 9. One
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can see from this figure that the small pomeron loops lead
to a contribution of the order of α3S to the renormalization
of the vertices of the particle–pomerons interaction and
can be ignored. The pomeron interaction also gives the new
intercept for the system of n pomerons (n = 2 in Fig. 9),
but this intercept turns out to be of the order of α3S and
can be safely ignored in the kinematical region we consider
here.
For a general proof that the enhanced diagrams can be

reduced to a system of non-interacting pomerons it is con-
venient to write the diagrams in the ω representation. In
this representation the single pomeron exchange has the
following form:

GP (Y ) = e
∆Y =

∫ a+i∞

a−i∞

dω

2πi

eωY

ω−∆
. (62)

A general enhanced diagram (see Fig. 10) can be writ-
ten in the form

An = γ

∫ a+i∞

a−i∞

dω

2πi

1

(ω−∆)n
eωYΣn−1(1PI) , (63)

where Σ(1PI) is an arbitrary pomeron diagram that does
not contain one pomeron exchange. This one pomeron irre-
ducible diagram can be presented in the form

Σ(1PI) =
∆2γ

ω−2∆
+

(
∆2γ

ω−2∆

)2 ∏

i=1,ji≥1

∆2γ

ω− ji∆
,

(64)

where ∆2γ = Γ (1→ 2)Γ (2→ 1) 
 α3S in our normaliza-
tion. The integral overω in (63) can be closed on the pole∆
of the mth order or some pole in Σ(1PI). In the former
case one obtains the contribution (see the first diagram in
Fig. 10)

An(ω =∆) =
1

(n−1)!

∂n−1

∂ωn−1
(Σ(1PI)n−1eωY )

∣
∣
∣
∣
ω=∆

.

(65)

Since Σ(1PI) contains at least one factor of 1
∆−2∆ that is

of the order of α3S at ω = ∆, the only contribution that

Fig. 10. The graphic repre-
sentation of the general proof
that the enhanced diagrams
can be reduced to a system of
non-interacting pomerons

is not small at αSY ≤ 1/αS is the exchange of a single
pomeron (a term with n = 1 in (65)). Closing on singu-
larities of Σ(1PI) we can extract the two pomeron irre-
ducible diagram (the second diagram in Fig. 10). Repeat-
ing the same procedure as we did for single pomeron ex-
change (see the fourth and fifth diagram in Fig. 10) we
conclude that the corrections to the intercept of the two
pomerons are also small and of the order of α3S. The rea-
son for this is the same since Σ(2PI) includes at least
one factor of 1

∆−2∆ (see Fig. 9a) or a factor of
1

2∆−3∆ as
in Fig. 9b. Both factors are of the same order and can
be neglected. Applying the same procedure to the dia-
grams in the last term in Fig. 10 we introduce the three
pomeron irreducible diagram and extract the termwith ex-
change of three pomerons. From this discussion one can
see that in the region αSY ≤ 1/αS the leading contribution
comes from big loops corresponding to the exchange of free
pomerons. This implies that we can safely use the t-channel
unitarity condition to match the two tree diagram con-
tributions in the opposite direction in rapidity (Mueller–
Patel–Salam–Iancu prescription) to properly account for
all loops in our region αSY ≤ 1/αS as will be shown in
the next chapter. Strong evidence of the applicability of
the Mueller–Patel–Salam–Iancu prescription was demon-
strated in [84], where diagrams were compared numerically
and the MPSI prescription showed very good agreement
with the exact solution.
Concluding this analysis we can claim that pomeron

calculus in zero dimensions is a theory of non-interacting
pomerons with renormalized vertices of the pomeron–
particle interaction. In dipole language, it means that we
have a system of non-interacting pomerons with a spe-
cific hypothesis on the amplitude of the dipole interactions
at low energy. For the problem that we are solving here,
namely when we have one bare pomeron at low ene rgy, this
amplitude is determined by (57).
For such a system we can calculate the scattering

amplitude using a method suggested by Mueller, Patel,
Salam and Iancu and developed in a number of papers
(see [7, 10, 14, 79, 85–88, 95, 97] and references therein).
This method suggests that the scattering amplitude can be
calculated using the t-channel unitarity constraint, which
is written in the following way (assuming that amplitudes
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at high energy are pure imaginary,N = ImA):

N([. . . ]|Y ) =N([. . . ]|Y −Y ′;P → nP )
⊗
N([. . . ]|Y ′;P → nP ) , (66)

where
⊗
stands for all needed integrations while [. . . ] de-

scribes all quantum numbers (dipole sizes and so on).
The correct implementation of all this leads in our case

to the following formula [14, 95, 97]:

NMPSI0 (Y ) = 1− exp

{

−γBA
∂

∂γ1R

∂

∂γ2R

}

×NMFA
(
γ1R|Y −Y

′
)

×NMFA
(
γ2R|Y

′
)∣∣
γ1
R
=γ2
R
=0
, (67)

where NMFA(Y, γR) is given by (58) (see also (54)) in the
mean field approximation and γBA ∝ α2S is the scatter-
ing amplitude at low energies, which is described by the
Born approximation in perturbative QCD. The difference
of (67) from the original MPSI approach is the fact that
this equation does not depend on the value of Y ′ and, be-
cause of this, we do not need to choose Y ′ = Y/2 for the
best accuracy.
Substituting (58) in (67) we obtain

NMPSI0

(
γBA|Y

)
= 1− exp

(
1

γBAeΓ (1→2)Y

)

×
1

γBAeΓ (1→2)Y
Γ

(

0,
1

γBAeΓ (1→2)Y

)

.

(68)

Γ (0, x) is the incomplete gamma function (see formulae
8.350–8.359 in [98]).
We claim that (68) is the solution to our problem. One

can easily see that N0(γ|Y )→ 1 at high energies, in con-
trast to the exact solution with the Hamiltonian of (1). The
exact solution leads to an amplitude that vanishes at high
energy [1–6, 13]. As has been mentioned the solution de-
pends crucially on the initial condition for the scattering
amplitude at low energies. For (68) this amplitude is equal
to

NMPSI0 (γ|Y = 0) =
∞∑

n=1

(−1)n+1n!(γBA)n , (69)

with γBA ∝ α2S. This equation reminds us of the ultraviolet
renormalon contribution and calls for better understand-
ing of the non-perturbative contribution.
We can rewrite (67) in a more convenient form using the

Cauchy formula for the derivatives, namely

∂nZMFA(γR|Y )

∂γnR
= n!

1

2πi

∮

C

ZMFA(γ′R|Y )

γ′n+1R

dγ′R . (70)

The contourC in (70) is a circle with a small radius around
γR = 0. However, since the function Z does not grow at
large γR for n≤ 1, we can close our contour C on the singu-
larities of the function Z. We will call this new contour CR.

We have

NMPSI0 (Y )

= 1− exp

{

−γBA
∂

∂γ1R

∂

∂γ2R

}

NMFA(γ1R|Y −Y
′)

×NMFA(γ2R|Y
′)
∣
∣
γ1
R
=γ2
R
=0

= 1−
∞∑

n=1

(−γBA)n

n!
n!n!

1

(2πi)2

∮

C1
R

dγ1R
ZMFA(γ1R|Y −Y

′)

(γ1R)
n+1

×

∮

C2
R

dγ2R
ZMFA(γ2R|Y

′)

(γ2R)
n+1

=
1

(2πi)2

∮ ∮
dγ̃1R
γ̃1R

dγ̃2R
γ̃2R

{

1− exp

(
γ̃1Rγ̃

2
R

γBAeΓ (1→2)Y

)

×
γ̃1Rγ̃

1
R

γBAeΓ (1→2)Y
Γ

(

0,
γ̃1Rγ̃

2
R

γBAeΓ (1→2)Y

)}

×ZMFA
(
γ̃1R
)
ZMFA

(
γ̃2R
)
. (71)

Here we introduce the new variables γ̃1R = γ
1
R exp(Γ (1→ 2)

(Y −Y ′)) and γ̃2R = γ
2
R exp(Γ (1→ 2)Y

′). In these new vari-
ables

ZMFA
(
γ̃1R
)
=

1

1+ γ̃1R
, ZMFA

(
γ̃2R
)
=

1

1+ γ̃2R
. (72)

Closing the integration on the poles γ̃1R =−1 and γ̃
2
R =−1,

we obtain (68).

3.3 The generating functional for multiparticle
production with pomeron loops

Using the result of the previous section we will derive
the formula in the MPSI approach for the general func-
tional, defined by (46). This formula is based on the solu-
tion of (45) but without the secondary derivatives. Such
a solution gives the MFA approximation to our problem
and we denote it as ZMFA(w, w̄, v|Y ). The equation for
ZMFA(w, w̄, v|Y ) looks as follows:

Z(w, w̄, v|Y ) =
we−Γ (1→2)Y

1+w(e−Γ (1→2)Y −1)

+
w̄e−Γ (1→2)Y

1+ w̄(e−Γ (1→2)Y −1)

−
(w+ w̄− v)e−Γ (1→2)Y

1+(w+ w̄− v)(e−Γ (1→2)Y −1)
.

(73)

Using the renormalized γ of (55) we can rewrite (73) in
a different form, namely

ZMFA(γR, γ̄R, γin,R|Y )

=
1

1+γReΓ (1→2)Y
+

1

1+ γ̄ReΓ (1→2)Y
−

1

1+ ξReΓ (1→2)Y

=
1

1+ γ̃R
+

1

1+ ˜̄γR
−

1

1+ ξ̃R
, (74)
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where we write ξ = 1−w− w̄+ v = γ+ γ̄−γin and

ξR ≡ γR+ γ̄R−γin,R =
ξ

1− ξ
, ξ =

ξR

1+ ξR
,

γ̃R = γRe
Γ (1→2)Y ; ˜̄γR = γ̄Re

Γ (1→2)Y ,

ξ̃R = ξRe
Γ (1→2)Y . (75)

The first equation of (75) is the definition of γin,R.
The general formula for the amplitude in the MPSI ap-

proach has the form

NMPSI
(
γBA, γBAin |Y

)

=

(

exp

{

−γBA
∂

∂γ1R

∂

∂γ2R
−γBA

∂

∂γ̄1R

∂

∂γ̄2R

+ γBAin
∂

∂γ1in,R

∂

∂γ2in,R

}

−1

)

× ZMFA
(
γ1R, γ̄

1
R, γ

1
in,R

∣
∣Y −Y ′

)

×ZMFA
(
γ2R, γ̄

2
R, γ

2
in,R|Y

′
)∣
∣
γ1
R
=γ2
R
=γ̄1
R
=γ̄2
R
=γ1
in,R

=γ2
in,R

=0

=

(

exp

{

−γBA
∂

∂γ̃1R

∂

∂γ̃2R
−γBA

∂

∂ ˜̄γ
1
R

∂

∂ ˜̄γ
2
R

+ γBAin
∂

∂γ̃1in,R

∂

∂γ̃2in,R

}

−1

)

×ZMFA
(
γ̃1R, ˜̄γ

1
R, γ̃

1
in,R

)

×ZMFA
(
γ̃2R, ˜̄γ

2
R, γ̃

2
in,R

)∣∣
∣
γ1
R
=γ2
R
=γ̄1
R
=γ̄2
R
=γ1
in,R

=γ2
in,R

=0
,

(76)

where γBA and γBAin are the elastic and inelastic amplitudes
of the interaction of two dipoles at low energy, which are
calculated in QCD in the Born approximation. The plus
sign in (76) in front of γBAin

∂
∂γ̃1
in,R

∂
∂γ̃2
in,R

reflects the fact that

the pomeron loop with two cut pomerons does not have
a negative contribution unlike the case of uncut pomerons.
The sign between the exponent and unity in (76) could eas-
ily be checked noticing that the first term of the expansion
of the exponent correctly reproduces the positive contribu-
tion of γin (cut pomeron).
The nice feature of this equation that one can see is that

the result does not depend on the value of the arbitrarily
chosen rapidity Y ′. Using the explicit form for ZMFA given
by (74) we can calculate ZMPSI in closed form denoting

G(x) ≡ exp

(
1

x

)
1

x
Γ

(

0,
1

x

)

. (77)

NMPSI is equal to

NMPSI
(
γBA, γBAin |Y

)

= 2(1−G(γBAeΓ (1→2)Y ))

−
(
1−G

((
2γBA−γBAin

)
eΓ (1→2)Y

))
. (78)

Useful formulae for getting (78) are the following:

∂k

∂γkin

∂l1

∂γl1

∂l2

∂γ̄l2

1

1+γ+ γ̄−γin
= (−1)l1+l2(l1+ l2+k)!

(79)

and equations 8.350–8.359 for the incomplete gamma func-
tion Γ (0, x) in [98].
Equation (78) allows us to calculate the cross section

with fixed multiplicity of produced particles. Namely, the
cross section for the processes with k〈n〉 particles in the
final state, where 〈n〉 is the mean multiplicity in our reac-
tion, can be calculated as

σk(Y ) =
1

k!

(
∂k

∂
(
γBAin
)kN

MPSI
(
γBA, γBAin |Y

)
)∣
∣
∣
∣
∣
γBAin =0

·
(
γBAin = 2γ

BA
)k
. (80)

Here we use that γBAin = 2γ
BA in the Born approximation

of QCD.
It is interesting to check the general equation (see (78))

calculating two known cases: the diffractive dissociation
process and the total inelastic cross section. The first one
can be calculated using (78) with γBAin = 0. The answer is

NMPSIdiff (γBA|Y ) = 2NMPSI0 (γBA|Y )−NMPSI0 (2γBA|Y ) ,
(81)

where N0 is given by (68). Equation (81) is a direct conse-
quence of the unitarity constraints (see (18)). As one can
see from (34) the same formula determines diffractive pro-
duction in the mean field approximation.
The value of the total inelastic cross section, which is

equal to the sum of diffractive production and inelastic
cross section, stems from (78) for γBAin = 2γ

BA, and it is
equal to

NMPSItotal inelastic(γ
BA|Y ) = 2NMPSI0 (γBA|Y )

=NMPSIdiff (γBA|Y )+NMPSIinel (γ
BA|Y ) ,
(82)

which is actually the unitarity constraint itself (see (18)).
One can see that the inelastic cross section is determined
by

NMPSIinel (γ
BA|Y ) = 1−G(2γBAeΓ (1→2)Y ) . (83)

4 Conclusions

In this paper we introduce a new generating function
for the processes of multiparticle production both for the
mean field approximation (see (16)) and for the general
case (see (46)). For the general case where the pomeron
loops have been taken into account, we obtain the linear
evolution equation for the generating function (see (45)),
while in the mean field approximation we proved both
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the linear evolution equation (see (28)) and the non-linear
equation (see (36)). The latter is the generalization of the
Kovchegov–Levin equation for diffractive production to
the general case of processes with arbitrary multiplicities.
Since this equation is proven for the general QCD case we
hope that the equations for the general generating function
can be proven for the real QCD evolution.
The second result of the paper is a new method of sum-

ming the pomeron loops. We argued that the sum of all
pomeron diagrams, including loops, in the kinematic re-
gion of (2) can be reduced to the diagrams of pomeron
exchanges without interactions between the pomerons if
we renormalize the amplitude of the low energy interac-
tion. Based on this result we suggest a generalization of the
Mueller–Patel–Salam–Iancu method of summation of the
pomeron loops. In particular, we calculated the new gen-
erating function for the inelastic processes in the improved
MPSI approximation (see (78)).
We would like to stress that we firmly believe that the

scattering amplitude calculated using this method leads
to a correct answer to the old problem: the high energy
asymptotic behavior of the scattering amplitude at ultra
high energies beyond pomeron calculus in the kinematic re-
gion of (2).
We hope that both results will lead to new simplifi-

cations in the case of BFKL pomeron calculus in QCD
(in two transverse dimensions). The general case of BFKL
pomeron calculus in QCD will be addressed in a separate
paper. We would like also to mention that a discussion of
this case has started in [99–102].
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